Extending the Unified Modeling Language for Ontology
Development

Kenneth Baclawski?, Mieczyslaw K. Kokar?, Paul A. Kogut!, Lewis Hart®,
Jeffrey Smith?, William S. Holmes III!, Jerzy Letkowski?, Michael L. Aronson®, and Pat Emery®

! Lockheed Martin Management and Data Systems
2 Northeastern University
3 Mercury Computer
4 Western New England College
5 GRC International

Abstract. There is rapidly growing momentum for web enabled agents that reason about and dynam-
ically integrate the appropriate knowledge and services at run-time. The dynamic integration of knowl-
edge and services depends on the existence of explicit declarative semantic models (ontologies). We have
been building tools for ontology development based on the Unified Modeling Language (UML). This
allows the many mature UML tools, models and expertise to be applied to knowledge representation
systems, not only for visualizing complex ontologies but also for managing the ontology development
process. UML has many features, such as profiles, global modularity and extension mechanisms that
are not generally available in most ontology languages. However, ontology languages have some fea-
tures that UML does not support. Our paper identifies the similarities and differences (with examples)
between UML and the ontology languages RDF and DAML+OIL. To reconcile these differences, we
propose a modification to the UML metamodel to address some of the most problematic differences.
One of these is the ontological concept variously called a property, relation or predicate. This notion
corresponds to the UML concepts of association and attribute. In ontology languages properties are
first-class modeling elements, but UML associations and attributes are not first-class. Our proposal is
backward-compatible with existing UML models while enhancing its viability for ontology modeling.
While we have focused on RDF and DAML+OIL in our research and development activities, the same
issues apply to many of the knowledge representation languages. This is especially the case for semantic
network and concept graph approaches to knowledge representations.

Keywords: ontology, semantic web, agents, OO modeling, UML, RDF, DAML.

1 Introduction and Motivation

Representing knowledge is an important part of any knowledge-based system. In particular, all
artificial intelligence systems must support some kind of knowledge representation (KR). Because
of this, many KR languages have been developed. For an excellent introduction to knowledge
representations and ontologies see [17].

Expressing knowledge in machine-readable form requires that it be represented as data. There-
fore it is not surprising that KR languages and data languages have much in common, and both
kinds of language have borrowed ideas and concepts from each other. Inheritance in object-oriented
programming and modeling languages was derived to a large extent from the corresponding notion
in KR languages.

KR languages can be given a rough classification into three categories:

— Logical languages. These languages express knowledge as logical statements. One of the best-
known examples of such a KR language is the Knowledge Interchange Format (KIF) [10].

2 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

— Frame-based languages. These languages are similar to object-oriented database languages.

— Graph-based languages. These include semantic networks and conceptual graphs. Knowledge is
represented using nodes and links between the nodes. Sowa’s conceptual graph language is a
good example of this [17].

The analogy between hypertext and semantic networks is compelling. If one identifies semantic
network nodes with Web resources (specified by Universal Resource Identifiers or URIs) and se-
mantic network links with hypertext links, then the result forms a basis for expressing knowledge
representations that could span the entire World Wide Web. This is the essence of the Resource
Description Framework (RDF) [12]. RDF is a recommendation within the XML suite of standards,
developed under the auspices of the World Wide Web Consortium. RDF is developing quickly [11].
There is now an RDF Schema language, and there are many tools and products that can process
RDF and RDF Schema. The DARPA Agent Markup Language (DAML) [24, 18, 31] is a language
based on RDF and RDF Schema that will be able to express a much richer variety of constraints
as well as support logical inference. For a good discussion of the design rationale of DAML+OIL
see [25].

As in any data language, KR languages have the ability to express schemata that define the
structure and constraints of data (instances or objects) conforming to the schema. A schema in a
KR language is called an ontology [13,19-21]. An ontology is an explicit, formal semantic model.
It is derived from the corresponding notion in Philosophy. See the classical work by Bunge [1,
2] as well as more recent work by Guarino, Uschold and their colleagues [6,7]. Data conforming
to an ontology is often referred to as an annotation or as markup, since it typically abstracts or
annotates some natural language text (or more generally a hypertext document). An ontology may
include vocabulary terms, taxonomies, relations, rules/assertions. An ontology should not include
instances/annotations.

The increasing interest in ontologies is driven by the large volumes of information now available
as well as by the increasing complexity and diversity of this information. These trends have also
increased interest in automating many activities that were traditionally performed manually. Web-
enabled agents represent one technology for addressing this need [26]. These agents can reason
about knowledge and can dynamically integrate services at run-time. Formal ontologies are the
basis for such agents. DAML+OIL is designed to support agent communication and reasoning.

RDF and DAML+OIL, which currently do not have any standard graphical form, could leverage
the UML graphical representation. In addition, RDF and DAML+OIL are relatively recent lan-
guages, so there is not as many tools or as much experience as there is for UML. We are currently
engaged in projects that have realized benefits in productivity and clarity by utilizing UML class
diagrams to develop and to display complex DAML+OIL ontologies. Cranefield [27] has also been
promoting ontology development using UML and has been translating UML to RDF. Although
their purposes are different, UML and DAML+OIL have many characteristics in common. For ex-
ample, both have a notion of a class which can have instances. Table 1 gives an attempt to capture
the similarities between the two languages at a high level.

Our paper discusses the similarities and differences between UML and DAML+OIL and how the
differences might be reconciled. One of the most problematic differences is the KR notion variously
called a relation, predicate or property. This KR notion appears, at a first glance, to be the same as
a UML association or attribute. This is misleading, since the corresponding KR concept is a first-
class modeling element, while UML associations and attributes are not first-class. More precisely,
in KR systems a relation can exist without specifying any classes that it might relate.

Extending the Unified Modeling Language for Ontology Development 3

DAML Concept Similar UML Concepts
Ontology Package
Class Class
As Sets (union, intersection, etc.)|Not Supported
Hierarchy Class Generalization Relations
Property Aspects of Attributes, Associations and Classes
Hierarchy None for Attributes, limited Generalization for
Associations, Class Generalization Relations
Restriction Constrains Association Ends, including multiplicity
and roles. Implicitly as class containing the attribute
Data Types Data Types
Instances and Values Object Instances and Attribute Values

Table 1. High-Level Mapping of UML and DAML Concepts

In fact, in some KR systems, it is the properties that are the primary modeling primitive, and
classes are effectively relegated to a secondary status. See, for example, [4], [8], [9] and [14]. In
such a KR system, it is assumed that the universe consists of instances that have properties. A
set of classes is then chosen so as to satisfy the criterion of “cognitive economy.” This essentially
means that the instances can be described economically from the point of view of memory usage.
However, there is a tradeoff between memory usage and time spent deriving consequences which
might otherwise be represented explicitly.

In UML, on the other hand, an association is defined in terms of association ends, which
must be related to classifiers, and an attribute is always within the context of a single class. This
difference between UML and most other KR languages has also been noted by Cranefield [27]. We
are proposing a modification to the UML metamodel to deal with this issue.

2 DAML Background

The aim of the DAML program is to achieve “semantic interoperability between Web pages,
databases, programs, and sensors.” [24] An integration contractor and sixteen technology devel-
opment teams are working to realize the DAML vision of “providing a set of tools for programmers
to build broad concepts into their Web pages ... and allowing the bottom-up design of meaning
while allowing higher-level concepts to be shared.” [24] DAML addresses the problem of building
a set of ontologies based on commonly accepted domain models to share in a military grid. The
solution is to develop usable interoperability technologies, similar to those that enable the web to
function. Toward this end, DAML+OIL will enable annotating information on the web to make
knowledge about the document machine-readable so that software agents can interpret and reason
with the meaning of web information. The only mechanism currently generally available for such
annotations on the Web is metadata in the head element of an HTML file. DAML+OIL enriches
and formalizes metadata annotations (see Figure 1).

DAML+OIL is only part of the Semantic Web vision [28,29] of the automation or enabling
of things that are currently difficult to do: locating content, collating and cross-relating content,
drawing conclusions from information found in two or more separate sources. DAML’s part is to
serve as a markup language for network agents to provide a mechanism for advertising and reusing
specifications. The software tools for creating these agents will be accomplished through the TASK
(Taskable Agent Software Kit) Program to reduce the per agent development cost. The third part of

4

Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

UML DAML
Class Class
“classifier” role type
type of ModelElement type
attribute ObjectProperty or DatatypeProperty
association end ObjectProperty
specialization of classes subClassOf
specialization of associations subPropertyOf
note comment
name label
“seeAlso” tagged value on a class and association seeAlso
“isDefinedBy” tagged value on a class and association isDefined By

Not supported

“Restriction” class

Not supported

“complementOf” property

Not supported

“unionOf” property

Not supported

“intersectionOf” property

“onProperty” association

onProperty

“toClass” association

toClass

class containing the attribute

“subClassOf” a property restriction

source class of an association

“subClassOf” a property restriction

attribute type

“toClass” on a property restriction

target class of an association

“toClass” on a property restriction

Not supported equivalentTo

Not supported sameClassAs

Not supported samePropertyAs

Not supported samelndividualAs

Not supported differentIndividualFrom
Package Ontology

“versionInfo” tagged value on a package versionInfo

import (dependency stereotype) imports

multiplicity cardinality

multiplicity range Y..Z

association target with end multiplicity = 0..1 or 1

UniqueProperty

association source with end multiplicity = 0..1 or 1

UnambiguousProperty

relationship between the association ends of an association|inverseOf

Not supported

| TransitiveProperty

Table 2. Mapping Between UML and DAML

Y = minCardinality, Z = maxCardinality

explicit semantic agreements via machine -readable ontologies

implicit semantic agreements on paper!

Subject verb object
document XML semantics for Full semantics
parsing info keywords schema || selected sentences for all content

»
>

browser | |web crawler | XML agents agents
parsers (near-term) (future)

Fig. 1. The Evolution of Metadata

the Semantic Web vision addresses the middleware layer as a continuation of the CoABS (Control
of Agent Based Systems) investment to bring systems, sensors, models, etc. into the prototype
“agent grid” as an infrastructure for the run-time integration of heterogeneous multi-agent and
legacy systems.

DAML’s applications will be far-reaching, extending to both the military and commercial mar-
kets. Its machine-to-machine language capabilities might be instrumental in realizing the appli-
cation-specific functionality, independent of human control. DAML+OIL will also enhance the
efficiency and selectivity of search engines and other automated document processing tools. Such
engines and tools will be able to scan multiple Web pages and conceptually relate content that cur-
rently might seem unrelated because of variations or imprecision in the language programmers used
to identify that content. A number of DAML tools have been built or are in progress, including an
ontology library, parser/serializer, ontology editor/analyzer, DAML crawler and viewer, etc. Trial
government (e.g. Intelink at the Center for Army Lessons Learned) and commercial (in e-commerce
and information retrieval) applications have been planned and built.

Both DAML+OIL and RDF express facts using statements (also called triples). An RDF state-
ment consists of a predicate, subject and object. The predicate is required to be a property and the
subject is required to be a resource (i.e., specified by a URI).

3 Properties of Mappings

Because of the increasing number of modeling languages, it is becoming more important to introduce
systematic techniques for constructing mappings (or transformations) between modeling languages
and proving that the mappings are consistent [15],[16],[22]. In this section we discuss in general
terms some of the issues that arise when constructing mappings between modeling languages.
When constructing mappings between modeling languages, it is important to understand the goals
and purpose of the mappings. A precise statement of goals and purpose is essential for dealing with
the many mapping issues, such as the following:

6 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

— Is the mapping required to preserve semantics? Ideally, the two languages should have well-
defined notions of semantics. In practice, they will not, so the best one could hope for is for the
mapping to be consistent. The notion of mapping consistency will be discussed below.

— Is the mapping required to be defined on the entire modeling language? In many cases, it
may suffice to define the mapping on a subset of the modeling language. The purpose of the
mapping can be used to answer this question. If the language is simply a means (or “front-end”)
for constructing models of the second language, then it is reasonable to use only those constructs
of the first language that are needed for the second.

— Is the mapping simply a one-way mapping from one language to the other or should it be
defined in both directions? If the mapping is defined in both directions, then it is called a
two-way mapping.

— If the mapping is a two-way mapping, should the two directions be inverses of each other?
Having inverse mappings is generally only possible when the languages are very similar to one
another. This is not the case for UML and DAML+OIL.

To make the discussion of mapping properties more precise, we need to introduce some concepts.
We presume that each modeling language has notion of semantic equivalence. The precise meaning
of this notion will depend on the language, but it usually takes a form such as the following: Two
models M7 and M> are semantically equivalent if there is a one-to-one correspondence between the
instances of M7 and the instances of My that preserves relationships between instances. Semantic
equivalence of two models usually means that the models differ from each other only in inessential
ways, such as renaming, reordering or adding redundancy.

We also presume that each model of a language can be serialized in a unique way. For example,
one can serialize a UML model using the XMI format, while DAML4OIL is defined in terms of
RDF which has a standard XML representation. For a model M in a language L, the size of M is
the size of its serialization (in whatever unit is appropriate for the serialization, such as the number
of characters). The size of M is written #M.

Now suppose that L; and Ly are two modeling languages. A mapping f from L; to Ly is a
function from the models of L; to the models of Ly which preserves semantic equivalence. In other
words, if M; and M, are two semantically equivalent models in L;, then f(M;) is semantically
equivalent to f(Ms). The notion of a mapping that preserves semantic equivalence is substantially
weaker than that of a mapping that preserves semantics (i.e., for every model M, the models M
and f(M) are semantically equivalent). The latter notion is what one usually means by a mapping
being “correct.” In the case of UML and DAML+OIL, the mapping is defined only on those UML
models that are necessary for expressing DAML+OIL ontologies, so it is only a partial mapping.

A two-way mapping from L; to Lo is a pair of mappings, the first fi; from L; to Lo and the
second fy from Ly to Ly, such that if f; is defined on M, then f5 is defined on f1 (M), and vice versa
for fo and fi. By assumption, two-way mappings preserve semantic equivalence in both directions

In general, two-way mappings are not inverses, even for the models on which they are defined.
The best one can hope for is that applying the two mappings successively will stabilize, but even
this is hard to achieve. To be more precise, we say that a two-way mapping is stable if for any model
M on which f; is defined, f1(f2(f1(M))) = f1(M), and similarly for models of Ly. While stability
is much easier to achieve than invertibility, it is still a strong property of mappings. Let (f1, fo)
be a stable two-way mapping. For any model M on which f; is defined, fo(f1(M)) forms a kind
of “canonical form” for M in the sense that f; and fs are inverses of each other on the canonical
forms.

Extending the Unified Modeling Language for Ontology Development 7

While stability is clearly desirable, it may not be necessary. A more realistic goal is for the two-
way mapping to settle down eventually. To be more precise, a two-way mapping (f1, f2) is bounded
if for any model M on which f; is defined, the sequence # f1 (M), # fo(f1(M)), #f1(f2(f1(M))), ...
is bounded.

While it is desirable for mappings to be bounded, this can conflict with the desire to keep
the mapping simple. Consider, for example, a mapping from UML that maps each association
to a DAML+OIL class and each association end to a DAML4OIL property. This is certainly
necessary for association classes and nonbinary associations. Using the same mapping uniformly
for all associations is certainly simpler than treating binary associations that are not association
classes in a different manner. However, doing so is unbounded. A binary association will map to a
class and two properties, which map back to a class and two associations, these then map to three
classes and four properties, and so on. This example illustrates how keeping the mapping simple
can result in unbounded mappings. We intend to propose mappings that are bounded, even though
this may make them somewhat more complex.

4 UML to DAML+OIL Mapping

In order to discuss the similarities between UML and DAML4OIL an initial incomplete mapping
between the languages has been created. Table 1 presents a high-level mapping of concepts from
UML and DAML+OIL, and serves as an overview of the strategy applied to the mapping.

Table 2 elaborates on the high-level concepts and expresses some of the specific extensions
necessary for the initial mapping between the languages. This proposed mapping is made with
the assumption that UML class diagrams are created specifically for the purpose of designing
DAMLAHOIL ontologies. Legacy class diagrams that were not originally intended for DAML+OIL
applications would be usable for DAML+OIL purposes but would need modification in order to
make full use of DAML+OIL capabilities. It is important to note that we make no claim that this
mapping is “correct” or that it “preserves semantics.” On the other hand, we have attempted to
ensure that the mapping is consistent in the sense that it preserves semantic equivalence.

The mapping in Table 2 mentions a number of constructs that UML does not support. We
discuss how UML may be extended to support them in Section 6 below. In principle, each of the
“Not supported” entries in the table could be added to UML by introducing a suitable stereotype.
This was the approach taken by DUET [32], and we make use of this for many of our examples.
Such an approach is certainly sufficient for the goal of using UML as a user interface for DAML,
but it does not define any semantics for the stereotypes. Without suitable constraints a mapping
defined by using UML stereotypes need not be consistent. For example, the sameClassAs property
of DAML+OIL should be constrained to link only classes. In Section 6 we address this problem by
proposing a modification of UML that introduces appropriate constraints.

4.1 Representing Subclass Relationships

The distinction between the UML notion of generalization and the DAML4OIL concept of sub-
ClassOf is a good example of the difference between consistency and correctness. UML special-
ization/generalization, while not formally specified, is most commonly used to represent the sub-
class/superclass relationship in object-oriented programming languages. This relationship is fun-
damentally behavioral, while the DAML+OIL subClass0f property is formally defined as being
set-theoretic. These two points of view are formally incompatible.

8 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

To see why these two are incompatible, consider the example of classes Square and Rectangle
defined as follows:

class Square {
double length;
Square(double 1) { length = 1; }
double area() { return length * length; }
void magnify(double scale) { length = scale * length; }
}
class Rectangle {
double length, width;
Rectangle(double 1, double w) { length = 1; width = w; }
double area() { return length * width; }
void magnify(double scale) { length *= scale; width *= scale; }
void stretchLength(double s) { length *= s; }
void stretchWidth(double s) { width *= s; }
}

From a set-theoretic perspective, a square can only be a subclass of rectangle because the set of
squares is a subset of the set of rectangles. However, this point of view ignores the behavioral aspects
of squares and rectangles. Indeed, in most object-oriented programming languages one could not
easily specify the Square class above as a subclass of Rectangle. Any such attempt would conflict
with the principle of substitutability: one cannot regard a square object as a rectangle because a
square cannot be stretched, whereas a rectangle with length equal to the width can be stretched.
On the other hand, from a behavioral perspective, a rectangle can be a subclass of a square. Indeed,
one could define it as follows:

class Rectangle extends Square {
double width;
Rectangle(double 1, double w) { super(l); width = w; }
double area() { return length * width; }
void magnify(double scale) { length *= scale; width *= scale; }
void stretchLength(double s) { length *= s; }
void stretchWidth(double s) { width *= s; }
}

Note the use of overriding for both the area and magnify methods. Using specialization/general-
ization as in this example (i.e., adding additional attributes and methods, and overriding methods)
is far more common than the set-theoretic point of view (i.e., a subclass that restricts the superclass
without adding any attributes or methods).

This example has generated considerable discussion, including many who dismiss the possibility
that Rectangle might be a subclass of Square as being unnatural or even bizarre. See [5] for a
refutation of such arguments.

From this example, it is clear that UML generalization is semantically quite different from the
DAMLAOIL subClass0f property. Yet, using the former to specify the latter preserves semantic
equivalence, because any two classes such that one is a specialization of the other will be mapped to
two DAML+OIL classes that are related by the subClass0f relation. Accordingly, mapping UML
generalization to DAML+OIL subClassOf is consistent.

Extending the Unified Modeling Language for Ontology Development 9

4.2 Representing DAML+}OIL Properties

Individual elements of this mapping can be illustrated to further explain the principles used to create
the mapping. Figure 2 depicts the “mother” relationship that exists between the class Person and
the class Woman. In UML this is represented as a labeled association between the two classes. In
DAMILA4OIL the property “mother” exists independently of the two classes, and any object could
be a mother unless suitable restrictions are imposed. For example, in Figure 2, this is represented
as a restriction for class Person, on property “mother”, to class Woman. Other restrictions could
also be imposed to represent other notions of motherhood (animals, companies and so on).

Person Woman

maother

Class: Persan | ™.

Resfriction:
onProperty: mother
toClass: Woman

Fig. 2. DAML+OIL Property Restriction

By applying the proposed DAML+4OIL to UML mapping, a DAML4OIL translation can be
generated. Listing 3 represents a section of an ontology that has been constructed from Figure 2

<daml:Property rdf:ID="mother"/>
<daml:Class rdf:ID="Person'">
<daml:label>Person</daml:label>
<daml:subClass0f>
<daml :Restriction>
<daml :onProperty rdf:resource="#mother"/>
<daml:toClass rdf:resource="#Woman"/>
</daml:Restriction>
</daml :subClass0f>
</daml:Class>
<daml:Class rdf:ID="Woman">
<daml:label>Woman</daml:label>
</daml:Class>

Fig. 3. DAML+OIL Translation of Figure 2

Another concept of the mapping can be seen in Figure 4, which shows one of the UML repre-
sentations of a DAML+OIL subProperty. In the figure, the property that represents a person as
being the “father of” another person is a refinement of the property of a person being the “parent
of” another person.

10 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

Person

fatherQOf -height: real parentOf

"-.'"
y

«DAMLsubPropertyOfs

Fig. 4. Example of a SubProperty

4.3 Representing DAML+}OIL Instances

Figure 5 illustrates the concept of an instantiated class in UML. In a similar fashion, this would
be described in DAML4OIL as an element identified as “Tommy”, with type identified as Person
and the value “53” assigned to the property “height”.

4.4 Representing Facets of Properties

To demonstrate the mapping between UML multiplicity and DAML+OIL cardinality, Figure 6
depicts the correspondance between the multiplicity of an association end and the corresponding
cardinality in DAML+OIL. In the figure, an association end that contains a single value would
map to a specific cardinality value for the property restriction. An association end that contains a
range of values would map to the minimum and maximum cardinality allowed for the corresponding
property restriction.

Figure 7 and Figure 8 depict special cases of DAML+OIL properties with predefined cardinality
restrictions. The first of these is called an Unambiguous Property and is depicted in Figure 7. An
Unambiguous Property is defined in DAML+OIL as a relation that, given a specified target element,
will always originate from the same source element.

Figure 8 represents the UML notation for the DAML+OIL concept of a Transitive Property. A
Transitive Property is defined in the terms of three or more elements. To be considered transitive,

Extending the Unified Modeling Language for Ontology Development 11

Person

_ , Tommy
heightreal 1= nstanceot | height: 5.3

Fig. 5. DAML+OIL Type Property

a property that holds true for the first and second elements and holds true for the second and third
elements must also hold true for the first and third elements. For example, given that Tom is the
ancestor of Jack, and Jack is the ancestor of Robert, then Tom is also the ancestor of Robert.

5 Incompatibilities Between UML and KR Languages

While there are many similarities between UML and KR languages such as RDF and DAML+OIL,
there are also many differences. Reconciling these differences has been one of the major problems
of our project. We now discuss some of the major incompatibilities.

5.1 Open and Closed Worlds

An important distinction between KR, approaches and object-oriented approaches is the notion of
monotonicity. A logical system is monotonic if adding new facts can never cause previous facts to
be falsified. Of course, one must be careful to define which facts are being considered in this process
so that it makes sense. Both RDF and DAML+OIL are monotonic: asserting a new fact can never
cause a previously known fact to become false.

By contrast, UML and other OO systems are typically not monotonic. There are many forms of
nonmonotonic logic, but the one that is closest to UML and OO systems is a logic that assumes a
closed world. A simple example can illustrate how monotonicity affects inference. Suppose that one
specifies that every person must have a name. Consider what would happen if a particular person
object does not have a name. In UML this situation would be considered to be a violation of the
requirement that every person must have a name, and a suitable error message would be generated.
In a monotonic logic, on the other hand, one cannot make any such conclusion. The person who
appears not to have a name really does have one, it just isn’t known yet.

As another example, suppose that in a UML class diagram one has Student and Department
classes, and one has an association major that specifies the department in which a student is
majoring. Assume that there is a multiplicity constraint on major that constrains a student to major
in at most one department. Now suppose that a particular student is majoring both in Computer

12 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

mimCardinality
cardinality . maxCardinality

1 1.2

Fig. 6. DAML+OIL Cardinality

Country Person

citizens]
0.1 0.

UnambiguousProperty |

Fig. 7. Example of an Unambiguous Property

Science and Chemistry. In UML this would violate the cardinality constraint and that would be
the end of it. In a monotonic logic, on the other hand, one cannot make such a conclusion, at least
not directly. It is possible that Computer Science and Chemistry are the same department, one
just hasn’t yet seen the statement that they are the same. In DAML+OIL one could assert that two
resources (in this case Computer Science and Chemistry) are the same by using the equivalentTo
property. It is unlikely that the annotator intended this, but it is consistent nonetheless.

Virtually all of the consistency constraints that one is accustomed to impose with UML (includ-
ing domain constraints, range constraints and multiplicity constraints) have very different conse-
quences in monotonic and nonmonotonic logics. This distinction between UML and KR represen-
tations would therefore seem to be insurmountable. Indeed, it does make it effectively impossible
to define a mapping between these languages that preserves semantics. However, it does not pre-
vent one from defining a mapping that preserves semantic equivalence, and that is all that we are
attempting to achieve.

Extending the Unified Modeling Language for Ontology Development 13

Person

-height: real

« DAMLTransitiveProperty»
0..* ancestor

Fig. 8. Example of a Transitive Property

5.2 Metalevels

Unlike most data modeling languages, KR languages do not have a rigid separation between meta-
levels. Indeed, they often have none at all. While one normally does maintain such a separation
to aid in understanding, the languages do not force one to do so. In effect, all of the statements
in the languages are in a single space of statements, including relationships such as “instanceOf”
that in UML goes between two metalevels. In RDF, as in many other KR languages, instances of a
class may also be classes, and a chain of “instanceOf” links may be of any length. The RDF Class
entity, in particular, is an instance of itself. While DAML+OIL inherits some aspects of RDF, the
model-theoretic semantics for DAML+-OIL differs from RDF in choosing to make a clear distinction
between metalevels.

5.3 Modularity

RDF and DAML+OIL as well as most other KR languages do not have profiles, packages or any
of the other modularity mechanisms supported by UML and UML-based CASE tools. RDF and
DAMLA4OIL does make use of XML namespaces, but only for disambiguating names, not as a
package mechanism. DAML+OIL introduced a notion of an Ontology and an imports property.
However, very little is mentioned about what these mean, and what is mentioned is informal. For
example, there is no requirement that one can only import an ontology, and there is no semantic
distinction between a statement or resource being in one ontology rather than being in another.

5.4 Containers and Lists

RDF has a number of container notions: Bag, Seq and Alt. The semantics of these notions are not
very clear, and DAML+OIL has largely replaced them with the notion of a List. UML does have
containers (in OCL), and it also has ordered associations which implicitly define a list within the
context of the association. However, lists and ordered associations are semantically different. UML
has a package notion which can be used as a container for model elements. However, UML packages

14 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

are not at the same metalevel as RDF containers and DAML+OIL lists, and the presentation
features of packages also make them unsuitable for representing RDF containers.

5.5 Property

As we have noted in Section 1 above, the DAML+OIL notion of property is a first-class modeling
element, while the UML notion of an association is not first-class. Furthermore, a UML binary
association always has just one domain class and one range class. DAML+OIL properties are not
limited in this manner, and one can specify complex domain and range constraints involving many
classes.

Another significant difference between UML and DAML+OIL is that the relation between UML
classes and associations is not exactly the same as between DAML4OIL classes and properties.
In UML, multiplicity constraints on associations can affect membership of objects in the classes
related through the association; this is because multiplicity constraints constrain the number of
objects that can be instantiated for these classes. Classes in UML do not directly affect associations.
In DAML+OIL, constraints on properties are imposed somewhat indirectly by specifying that a
class is a subtype of a class called a restriction. Doing this may limit the scope of the properties
being constrained by the restriction class. Finally, another important difference between UML and
DAMLAOIL is that descriptions of both classes and properties in DAML+OIL can be distributed
over various Web sites. This is not in the spirit of UML.

The differences identified above have their own advantages and disadvantages. The idea of
distribution of descriptions, for instance, goes against the principle of modularization, an accepted
principle in software engineering. On the other hand, the idea of a property being associated with
multiple classes is more flexible and might foster reuse. Consider, for example, the notion of a
location. This is a property that occurs frequently in models, often several times within the same
model. In UML, such occurrences are different associations, while in DAML+OIL, they would all
be the same property.

For instance, the location property could be used to associate Faculty with University. Each
link of this association would give the University affiliation of a faculty member. In UML it would
be modeled as an association. The same property might also be used for associating a Building
with its Address. In UML, this must be modeled as a second association. These two associations
are necessarily different even if they use the same name because the associations are in different
namespaces.

In RDF and DAML+OIL (as well as many other knowledge representation languages), proper-
ties are first-class. A property need not have any domain or range specifications at all, but when it
does it may have multiple domains and only one range. Furthermore, properties may have values
that are literals as well as objects, so that properties subsume both the association and the attribute
concepts in UML.

On the other hand, UML allows associations that are nonbinary, while properties can only be
binary. There are well-known techniques for dealing with nonbinary relationships, but it is much
harder to deal with the fact that UML associations and attributes cannot be first-class.

To deal with the problem of first-class properties, we propose that a new type of model element
be added to UML for representing properties. Since RDF properties are unidirectional, it would be
inconsistent to view a property as a grouping of associations. To be consistent one must interpret
a property as an aggregation of association ends from different associations. This is discussed in
more detail in Section 6.

Extending the Unified Modeling Language for Ontology Development 15

5.6 Class Constructors

One feature that DAML+OIL introduced is the ability to construct classes using boolean operations
(union, intersection and complement) and quantifiers. The boolean operations were introduced
using list-valued properties called union0f and intersection0f, along with a class-valued property
named complement0f. Quantification was introduced by using the notion of a restriction.

The only difficulty with introducing the same capability in UML is that there is no suitable
notion of a container or list in UML as noted in Section 5.4 above. Introducing a notion of a list
just for this purpose seems unnecessary inasmuch as the DAML4OIL use of lists in this case does
not use the ordering information.

The feature of lists that DAML4OIL does use is the fact that lists are bounded containers.
A container is bounded if one cannot add, remove or change elements in the container by simply
asserting new facts. A list is bounded because any alteration in the list requires that some fact
about the list be unasserted. This feature of lists is important only for a monotonic logic discussed
in Section 5.1 above. If one assumes a closed world, as one typically does in UML models, then
boundedness is not useful. Furthermore, there are other mechanisms in UML for specifying that a
feature of a model is not changeable. Accordingly, our proposal for introducing class constructors
into UML does not make use of lists.

5.7 Cardinality Constraints

UML multiplicity constraints can be consistently mapped to DAML+OIL cardinality constraints as
in Figure 6. The only incompatibilities are the result of properties being first-class model elements
that are one-directional. The first-class feature of properties means that one can specify a cardinality
constraint for every domain of a property all at once. In UML one must specify this separately for
each association (end) belonging to the property, while in DAML+OIL it is only necessary to specify
it once. On the other hand, UML allows one to specify cardinality constraints on all of the ends
of an association. In DAML+OIL, one must introduce an inverse property in order to specify a
cardinality constraint on the domain of a property.

5.8 Subproperties

RDF allows one property to be a subproperty of another. UML has the ability to specify that one
association is a specialization of another, though this construct is rarely used. In our recommenda-
tion, Property is a specialization of GeneralizableElement, so that a property can be a specialization
of another. Of course, OCL constraints must be added to ensure that one does not have meaning-
less specializations, such as properties that are specializations of associations, and the semantics of
property specialization must be specified carefully.

5.9 Namespaces

While it is reasonable to define a mapping from UML to DAML4OIL by specifying how each
construct is to be mapped, one must also consider how the constructs are related to one another. In
other words, in addition to the major constructs one must also consider the “glue” that ties them
together.

Constructs in DAML4OIL are linked together either through the use of URIs or by using
the hierarchical containment relationship of XML. DAML+OIL objects need not be explicitly

16 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

named (i.e., they can be anonymous), and such objects can be related to other objects using XML
containment.

UML uses a very different kind of “glue” to link its model elements to each other. Instead of
URIs, it uses names in a large number of namespaces. For example, each class has its own namespace
for its attributes and associations. This is further enriched by the ability to specify private, protected
and public scopes. RDF also has namespaces (from XML), but XML namespaces are a very different
notion. RDF lacks any kind of name scoping mechanism. In addition, one cannot specify navigability
constraints for RDF properties. While RDF properties are unidirectional, this is only a mechanism
for distinguishing the roles of objects being related. It does not limit accessibility.

Any mapping from UML to DAML+OIL or the reverse must have a mechanism for ensuring
that names are properly distinguished. However, there are known methods for dealing with this
problem, and no new UML features are needed to deal with this.

6 Recommendations

We now give a specific recommendation for a modification to the UML metamodel that would enable
one to model using first-class properties as well as to construct classifiers using boolean operations
and quantification. The classifier constructors enable one to specify complex crosscutting constraints
using UML. The metamodel for our proposal is shown in Figures 9, and 10. All of the metaclasses
in these figures are already part of UML except for Property, Restriction, Union, Intersection
and Complement. We first give the rationale and semantics of the Property metaclass and then
consider the classifier constructors.

We make no claim that this is a complete specification. Our intention was to raise issues and
to outline a solution. A full OMG proposal is beyond the scope of this paper. Such a proposal
should consider other crosscutting aggregations of model elements. For example, one could aggregate
attributes and methods in much the same way that association ends are aggregated by using
properties.

6.1 Property Recommendation

DAMLA4OIL is similar to many other KR languages that are based on the mathematical notion
of a graph or network (consisting of a set of vertices and edges). Conceptual graphs and semantic
networks are examples of commonly used KR languages of this kind. Natural Language Processing
(NLP) systems are well suited to this kind of knowledge representation because an edge from
one vertex to another corresponds to a predicate linking a subject to an object. Parts of speech
in general map reasonably well to modeling constructs in KR systems (see, for example, [3]).
In DAML+OIL a predicate is represented by a property. However, the DAML+OIL notion of a
property is defined independently of any context in which it might be used. Whether properties
should be decontezrtualized in this manner is a hotly debated philosophical issue.

We do not take any particular stand on whether decontextualized properties are appropriate for
modeling activities. Rather we feel that this decision should be left to the modeler. Furthermore,
the knowledge representation community is a large and growing community, and it makes sense to
support their modeling techniques if it is convenient to do so and if it does not break any existing
models. In addition, the programming language community has introduced a notion of first-class
properties called (crosscutting) aspects [30]. Support for modeling aspects would also be desireable.
We argue here that by adding a few additional model elements to the UML metamodel one can make

Extending the Unified Modeling Language for Ontology Development 17

GeneralizableElement

N
| |

Classifier Association Property
| | | |
DerivedClassifier Class DifferentindividualFrom EquivalentTo
? 1
I | | |
Union Complement SameClassAs SamelndividualAs
Intersection Restriction SamePropertyAs

Fig. 9. The Specification of the Proposed UML Modification: Metaclass Hierarchy

UML compatible with knowledge representation languages as well as help support aspect-oriented
programming.

To close the gap in the expressibility of UML, we propose to modify UML by adding a metaclass
called Property as in figures 9 and 10. As can be seen from the diagram, Property is an aggregation
of a number of association ends. The notion of Association End does not need to be changed. The
notion of Property serves as a means of grouping various association ends. The fact that Property
is a first-class concept is shown by the fact that Property can exist without being associated with
any classes. A property can be constrained by using restrictions. The notion of a Restriction is
discussed in more detail in the next section.

It is tempting to deal with the issue of first-class properties by simply reifying them. Classes
are first-class modeling elements, so this appears to solve the problem. For example, instead of
attempting to model location as an association, one could model it as a class Location. However,
this has several disadvantages. It can result in complex, unnatural ontologies, and it puts the burden
on the ontology developer to deal with this incompatibility issue. Furthermore, if this is used as a
mechanism for mapping between DAML+OIL and UML, then the resulting mapping is unbounded,
as has been discussed in Section 5.5.

The semantics for metamodel elements is specified in UML by using OCL. We now give an
example of such a specification, including both the rationale for it and the formal expression.
A property is a grouping of association ends. Properties “crosscut” the Association concept. In
particular, no property can have more than one of the association ends of an association. To
express this in OCL one uses allConnections, the set of all Association Ends of an Association,
and we introduce allPropConnections to be the set of all Property generalizable elements of an

18 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

. L Propert
Association 1 2. | AssociationEnd | 0. 0.1 perty
|l ““|+transitive: boolean
. e
0. 1.
onfroperty
1 +participant .-
Classifier| 1.7 0.0 | Restriction
N foClass
n“?
0 T
infersectionOr & Qf
0. Q.”
Complement Intersection Union

Fig. 10. The Specification of the Proposed UML Modification: Meta-Associations

Association. If T is the intersection of the allConnections and allPropConnections sets, then T has
cardinality at most 1. More formally:

allConnections: Set(AssociationEnd);

allPropConnections: Set(Property);
self.allConnections->intersection(self.allPropConnections:Set(T)):Set(T);
size (#T)<=1

In addition, one must specify that a property can only be specializations or generalizations of
other properties.

6.2 Class Constructor Recommendation

We propose a mechanism in UML whereby one can construct classifiers from other classifiers using
the same boolean operations and quantifiers as in DAML+OIL. The proposed mechanism dif-
fers somewhat from DAML+OIL because UML does not have a suitable notion of a container as
noted in Section 5.4 above. The metamodel for our proposal is shown in Figures 9, and 10. The
metaclasses Union, Intersection and Complement play the roles of the DAML+OIL properties
unionOf, intersection0f and complementOf, respectively. Although the first two properties are
list-valued, DAML+OIL does not make any use of the list ordering. The Restriction metaclass
is almost the same as the DAML4OIL notion of a metaclass. We only show the case of a toClass
restriction in Figure 10. A complete proposal would also include the other forms of restriction
specified in DAML+OIL: hasValue, hasClass, minCardinality, etc.

A restriction is a classifier for objects. The instances of the restriction are the objects that satisfy
a condition on one or more properties associated with the restriction. A restriction is imposed on
a class by specifying that the class is a specialization of the Restriction classifier.

Extending the Unified Modeling Language for Ontology Development 19

Faculty +affiliationdocation | Organization
<<Property>> onPropeny | <<Restriction>> toClass <<Union>>
location -
rJ \l I
’(_,..-‘ V4 \
e £ \'1
=<Intersection=>> University School
\\
N,
1,// Y

[Institute l <<Complement=>> _-Company

Fig.11. Example Model using the Proposed UML Extension

If a Restriction classifier is linked with a property (via onProperty), and if the Restriction
classifier is linked with Classes (via the toClass meta-Association), then the instances of the
Restriction classifier can only link with objects that are in one of the specified classes.

As with the properties, the Restriction classifiers can only be generalizations and specializations
of other Restriction classifiers.

6.3 Examples of the Proposed Constructs

To illustrate how one would use the proposed modeling constructs, we present an example in
Figure 11. In this example, there is an association between Faculty and Organization, one of
whose roles (association ends) is named affiliation. We specify that this association end belongs
to the location property by appending the property name to the association end name, separated
by a colon. The property itself is defined elsewhere. In this example, it is shown using the graphical
symbol for a class, modified by using the Property stereotype.

The classifier constructors are also shown using the same class graphical symbol, modified with
the appropriate stereotype. The Union classifier specifies the union of all schools, universities and
institutes that are not companies. The Restriction specifies a classifier whose objects are the ones
whose location is a school, university or non-company institute. Because the Faculty class is a
specialization of the Restriction, the affiliation(s) of a faculty member must be organizations that
are schools, universities or non-company institutes.

7 Conclusion

In this paper we have reported on our work in progress on using UML as an ontology development
environment. We have identified similarities and differences between UML and KR languages, and

20 Baclawski, Kokar, Kogut, Hart, Smith, Holmes, Letkowski, Aronson and Emery

we have discussed how they can be mapped to each other in the case of DAML+OIL. In the
“similarities” discussion we showed how UML concepts can be mapped to DAML~+OIL. In the “in-
compatibilities” discussion we identified differences between the two representations. In the “map-
ping” discussion, we made an attempt to give rules for translating UML concepts to DAML+OIL
concepts. As a result of our analysis, we came to the conclusion that some of the concepts are sig-
nificantly incompatible. In particular, the concept of DAML+OIL Property, although somewhat
similar to the UML Association concept, cannot be mapped easily. We believe that this is the
main obstacle to using UML (and UML tools) for DAML-based ontology development. We believe
this obstacle could be reconciled by a modification to the UML metamodel. We also introduced
the ability to construct classifiers using boolean operations and quantification. These are useful
for specifying crosscutting constraints that can be imposed on many associations all at once. The
motivation for these modifications to UML was to make it more compatible with KR languages and
aspect-oriented programming. This might lead to the acceptance of UML by the knowledge repre-
sentation community as the preferred graphical notation for KR languages, such as DAML+OIL,
that are based on graphs.

Acknowledgements

This material is based upon work supported by the Air Force Research Laboratory, Contract
Number F30602-00-C-0188.

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Unites States Air Force.

References

M. Bunge. Treatise on basic philosophy. III: Ontology: The furniture of the world. Reidel, Dordrecht, 1977.

M. Bunge. Treatise on basic philosophy. IV: Ontology: A world of systems. Reidel, Dordrecht, 1979.

R. Abbott. Program design by informal English descriptions. Comm. ACM, 26(11), 1983.

Y. Wand and R. Weber. An ontological model of an information system. Trans. Software Engineering,

16(11):1282-1292, 1990.

5. K. Baclawski and B. Indurkhya. The notion of inheritance in object-oriented programming. Comm. ACM,
37(9):118-119, September 1994.

6. N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a terminological clarification. In N. Mars,
editor, Towards Very Large Knowledge Bases. I0OS Press, 1995.

7. M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge Engineering Review,
11(2), June 1996.

8. J. Parsons and Y. Wand. Using objects for systems analysis. Comm. Assoc. Computing Machinery, 40(12):104—
110, 1997.

9. J. Parsons and Y. Wand. Choosing classes in conceptual modeling. Comm. Assoc. Computing Machinery,
40(6):63-69, 1997.

10. M. Genesereth. Knowledge Interchange Format draft proposed American National Standard (dpANS)
NCITS.T2/98-004, 1998. Available at logic.stanford.edu/kif/dpans.html.

11. S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for RDF. In QL’98 - The Query
Language Workshop. W3C, 1998.

12. O. Lassila and R. Swick. Resource description framework (RDF) model and syntax specification, Feburary 1999.
www.w3.org/TR/REC-rdf-syntax.

13. J. Heflin, J. Hendler, and S. Luke. Coping with changing ontologies in a distributed environment. In AAAI-99
Workshop on Ontology Management. MIT Press, 1999.

14. Y. Wand, V. Storey, and R. Weber. An ontological analysis of the relationship construct in conceptual modeling.

Trans. Database Systems, 24(4):494-528, 1999.

- W

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.
27.

28.
29.

30.

31.

32.
33.

Extending the Unified Modeling Language for Ontology Development 21

J. Smith. UML Formalization and Transformation. PhD thesis, Northeastern University, Boston, MA, December
1999.

J. Smith, M. Kokar, and K. Baclawski. Formal verification of UML diagrams: A first step towards code generation.
In Eighth OOPSLA Workshop on Behavioral Semantics, pages 206-220, November 1999.

J. Sowa, editor. Knowledge Representation: Logical, Philosophical, and Computational Foundations. PWS Pub-
lishing, 2000.

J. Hendler and D. McGuinness. The DARPA Agent Markup Language. IEEE Intelligent Systems, 15, No.
6:67-73, 2000.

J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language for Internet applications.
Technical Report www.cs.umd.edu/projects/plus/SHOE, Institute for Advanced Studies, University of Maryland,
2000.

D. L. McGuinness, R. Fikes, J. Rice, and S. Wilde. An environment for merging and testing large ontologies. In
Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning
(KR2000), 2000.

Eckhard D. Falkenberg, Kalle Lyytinen, and Alex A. Verrijn-Stuart, editors. Ontological Evaluation of the OML
Metamodel, volume 164 of IFIP Conference Proceedings. Kluwer, 2000.

J. Smith, M. Kokar, K. Baclawski, and S. DeLoach. Category theoretic approaches of representing precise UML
semantics. In Proceedings of the Precise UML Workshop at ECOOP 2000, Sophia Antipolis, France, 2000.

G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified Modeling Language Specification, March 2000. Available
at www.omg.org/technology/documents/formal/unified_modeling. language.htm.

DAML. DARPA Agent Markup Language Web Site, 2001. www.daml.org.

I. Horrocks. DAML+OIL Design Rationale, 2001. www.cs.man.ac.uk/horrocks/Slides/index.html.

D. McGuinness. Ontologies and online commerce. IEEE Intelligent Systems, Vol. 16, No. 1:8-14, 2001.

S. Cranefield. Networked knowledge representation and exchange using UML and RDF. J. of Digital information,
1(8), February 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May 2001.

E. Miller, R. Swick, D. Brickley, and B. McBride. Semantic web activity page, April 2001. Available at
www.w3.org/2001/sw/.

T. Elrad, R. Filman, and A. Bader. Aspect-oriented programming: Introduction. Comm. ACM, 44(10):29-32,
October 2001.

I. Horrocks, P. Patel-Schneider, and F. vanHarmelen. Reviewing the design of DAML+OIL: An ontology language
for the semantic web. In AAAI/TAAI 2002, pages 792-797, 2002.

Daml uml enhanced tool (duet), 2002. http://grcinet.grci.com/maria/www/CodipSite/Tools/Tools.html.
McGuinness D. L., R. Fikes, J. Hendler, and L. A. Stein. Daml+oil: An ontology language for the semantic web.
IEEE Intelligent Systems, September/October:72-80, 2002.

